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An improvement to the Method of Integral Relations (MIR) using orthonormal 
weighting functions is described. The method is applied to two test problems in boundary 
layer flow for which similarity solutions exist. The improved method is written for ar- 
bitrary order and it is shown to give close agreement with the similarity solutions as the 
order is increased. 

The formulation of the Method of Integral Relations (MIR) for treatment of 
boundary layer flows was first presented by Dorodnitsyn [l] in 1960. Since then 
it has been applied to a variety of problems dealing with both attached and 
separated flows [2-71. Boundary layer flows are relatively simple to treat due to 
the parabolic nature of the underlying governing partial differential equations. 
The MIR has also been applied to elliptic and mixed elliptic-hyperbolic problems; 
for example, Belotserkovskii [8] applied the MIR to the supersonic blunt body 
problem. However, the nature of the governing equations in such cases requires 
that, within the framework of the MIR, the problem be treated as a two-point 
boundary value problem. Due to the manner in which Belotserkovskii set up the 
MIR formulation the downstream boundary condition appeared as a saddle 
point where the flow becomes sonic. 

In general, application of the MIR to elliptic or mixed type problems will 
require an additional iterative technique in order to link conditions at the 
“downstream” boundary with conditions at the “upstream” boundary (i.e., point 
at which integration of the ordinary differential equations begins). The multiple 
shooting method [9] is well suited to this problem. Meng [lo] has used the multiple 
shooting method in conjunction with the GTT (or Telenin’s) method to consider 
the Reentry Base Heating problem. The GTT method is similar to the MIR in 
that it modifies the governing partial differential equations so that they may be 
treated as ordinary differential equations. 
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The MIR is based on the representation of the flow variation in one or more 
directions analytically, and, in principle, such variation can be exactly accounted 
for by including a sufficiently large number of terms, N, in the analytic expressions. 
In practice the maximum value typically considered is N = 4 or 5. For the 
elementary case of two-dimensional similarity solutions the equations reduce to 
algebraic equations and solutions can readily be obtained up to larger values 
of N (typically N = 10). 

There are two reasons for normally restricting N to 4 or 5. These reasons can 
be illustrated by considering the case of a two-dimensional incompressible bound- 
ary layer flow parallel to a wall. After suitable transformation the basic integral 
equation becomes (see [1]) 

-$ jolduf(u) du = ; lo1 ef’(u)(l - u”) du - [f’(u) &an - /olj”(u) T du. (1) 

Here 6 is the coordinate parallel to the wall, v is the transverse coordinate, u is 
the [ component of velocity, T = &/a~, d = I/T, D is the external velocity 
gradient, andfis the weighting function. In his original presentation Dorodnitsyn 
chose the linearly independent set of functions, 

fk = (1 - UY, (2) 

and the following representation for the reciprocal of the normal velocity gradient, 

’ = & [ a, + y a& 
j=l 1 . (3) 

To evaluate the N unknown coefficients aj , Eq. (1) must be evaluated with N 
different weighting functions, fK , k = l,..., N, given by Eq. (2). For N large the 
difference between fnr and j& is very small and the corresponding evaluations 
of Eq. (1) are almost linearly dependent. The result of applying fk to Eq. (1) 
N times can be expressed in matrix notation as 

and 3 
[~lP4~51 = [Cl (44 

[hj/@] = [IS]-l [Cl. (4b) 

The matrices [B] and [B]-l are progressively more ill-conditioned as N increases. 
The second difficulty associated with N becoming large is the algebraic labor 

required in the actual calculation of matrices [C] and [B]. For incompressible 
flow past adiabatic walls requiring solution of Eq. (1) only, this is not particularly 
excessive, but for more complicated problems in compressible, three-dimensional 
or separated flow Eq. (1) will be replaced by a system of coupled nonlinear integro- 
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differential equations. For such equations the effort required to obtain analytic 
expressions for [B] and [C] for large N would be prohibitive. 

In the present method both these difficulties are overcome. Two test cases will 
be considered to illustrate the method. The first concerns the attached boundary 
layer flow of an incompressible fluid over a wedge for various included angles. 
For such a flow a similarity solution due to Falkner and Skan [l l] is available. 
For this problem comparisons are made with the conventional application of 
MIR [l]. The second test case deals with supersonic boundary layer flow on a cone. 

The basis of the present method is to take Dorodnitsyn’s weighting functions 
and to generate from them a set of orthonormal functions, gj . The functions g, 
are used to replace the weighting function ,f;: and also to replace powers of u in 
the analytic representation for 8. The result of evaluating Eq. (1) then permits 
Eq. (4b) to be replaced by 

auj/a( = C’(j). (5) 

In contrast to the original formulation no matrix inversion is required. Also, 
the problem of tedious algebraic calculations is avoided by evaluating C’(j) 
numerically. 

The functions gj have the form 

where fk are the Dorodnitsyn weighting functions defined by Eq. (2) and the 
coefficients bki are evaluated using the Gram-Schmidt orthonormalization 
process [12]. For this problem, the values of the leading coefficients are bll = 61ja, 
b,, = -(30)‘/“, b,, = (120)li2, etc. A definition of the inner product with respect 
to a given weighting function, w, is required. This is 

( gi 3 gj) = s b g&4 gi(4 ~(4 dx 
a 

(7) 

Then {g*(x)} is a set of orthonormal functions if 

(&P&) = 19 i =j; 

= 0, i #j. 

To apply this to the first model problem Eq. (3) is replaced by the following 
representation for 6, 

8= -& b,+ Nslbjg,. 
i=l I 

(8) 
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The nonorthogonal leading term, b, , is retained to ensure the correct behavior 
for B at the outer edge of the boundary layer. Replacing f in Eq. (1) by g and 
expanding the right-hand side of Eq. (1) leads to 

N-l 

be + C bjgj 
j=l 1 gk & du = C’(k), k = I,..., N. (9) 

Comparison of Eqs. (7) and (9) shows that the appropriate orthonormal weighting 
function is w(u) = u/(1 - 24). 

Previous applications of MIR have all used the same weighting function, 
(1 - u)~, as suggested by Dorodnitsyn [l]. However, in switching to the corre- 
sponding orthonormal functions the weighting function, w, may vary from problem 
to problem. Thus for the inclined cone problem [5] the correct weighting function 
is W(U) = l/(1 - u). Clearly different weighting functions combined with the 
same basic functions, (1 - u)~, lead to different orthonormal functions. 

With gk appropriately chosen Eq. (9) becomes 

db, l 
s 

dbk 
zo 

g,w du + z = C’(k), k = I,..., N - 1. 

When k = N Eq. (9) reduces to 

db, l 
JFO f g,w du = C’(N). 

From Eqs. (10) and (11) it follows that 

$$ = C’(k) - C’(N) [L1 gkw du]/[j-; g,w du]. 

(11) 

(12) 

Consequently the db,/d[ are given explicitly and an ill-conditioned matrix is 
avoided. Integrals of the form [Ji gkw du] can be evaluated once and for all. 

c’(k) = ; IO1 &k’(u)(l, - U”) du - [&‘(u) &all - 1’ g;(u) T du. (13) 
0 

The integrals on the right-hand side of this equation have been evaluated numeri- 
cally using a composite Simpson’s rule and m evaluations of the integrands at 
equal intervals in the range u = 0 to 1. Typically for m > 30 C’(k) is accurate 
to six decimal places. 

To compare with the conventional application of MIR Eqs. (12) and (13) have 
been integrated numerically using a fourth-order Runge-Kutta scheme. Starting 
data for the integration are provided by the Falkner-Skan solutions at .!J = 1. 
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Three cases have been considered: 

(a) fl = 0.5 (favorable pressure gradient), 
(b) /3 = 0 (flat plate), 
(c) p = -0.14 ( un avorable pressure gradient), f 

where 
p = (2&/Z v/v. 

Solutions for these cases by the conventional application of MIR could be 
found by reducing Eq. (1) to a set of algebraic equations [l]. However, to present 
a situation which is representative of more general nonsimilar flow the integration 
of the equations given by Dorodnitsyn [l] (corresponding to Eq. (1)) has been 
carried out numerically. 

Figures 1, 2, and 3 show the percentage difference between the approximate 
and exact wall shear stress for various values of /?. For favorable and zero pressure 
gradient the orthonormal functions give more accurate results at the same order. 
This does not seem to be the case for the unfavorable pressure gradient shown 
here. However, the main point of this example is to show that higher orders using 
the orthonormal representation approach more closely the exact solution, and 
that the extension to higher order is trivial compared with the labor and the 
ill-conditioned results associated with traditional MIR. 

p = 0.5 (FAVOURABLE PRESSURE GRADIENT) 

- MIR ( DOR~DITSYN WEIGHTING FUNCTION, c;-dk) 

---MIR’ ( ORTHONORMAL WEIGHTING FUNCTION, 
E 

5 (I4 ) 

N=4 

N=2 

DIRECTION OF E. L GROWTH - 
I I I I 1 

I I.1 1.2 1.3 I.4 1.5 

6 

FIG. 1. Comparison of orthonormal MIR and conventional MIR for FalknerSkan solutions. 
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p = 0 (FLAT PLATE) 

I%- -M/R (DORODN~TSYN WEIGHTING FUNCTION, (I+)~) 

---MIR ( ORTHONORMAL WEIGHTING FUNCTION, :CIj (I-u)j) 
J’I 

8 
N :4 

X0 

9, 

N=5 

-w=‘-----p4 
--- “NZ3 

J-j -I% - 

DIRECTION OF B.L. GROWTH- 
-2% I I I I I 

1.0 I.1 1.2 1.3 I.4 I.5 

E 

FIG. 2. p = 0 (flat plate). 

I% - 
p = - 0.14 (UNFAVORABLE PRESSURE GRADIENT) 

- MIR ( DOR~DNITSYN WEIGHTING FUNCTION, (i-uIk) 

8 ---MIR ( ORTHONORMAL WEIGHTING FUNCTION, f 0; (I-d) 
x J=I 

- 
,N=4 

\ / 

‘,N=4 // 

\ 1’ 
\ / DIRECTION OF B.L. GROWTH-, 

-2% - I I I / I 1 
1.0 I.1 1.2 1.3 1.4 I.5 

< 

FIG. 3. ,!I = -0.14 (unfavorable pressure gradient). 
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The second test case, that of compressible boundary layer flow over a cone at 
zero angle of attack, is more complex because it involves both variable density 
and heat transfer. For this case the exact integral relations, equivalent to Eq. (l), 
are 

s 

1 

gj(u) ; du = b, g,'(O) Twa11 + J1 
i 

g;(u) 7 du , 
0 0 I 

I 

1 

0 
g,(U) f dU = bIgi' SwallTwall + bzg5(0) g 1 wa1l Twall 

+ (b, + b,) lo1 gi'W T  ; du + b, s,' gX4 7s du 

+ b, s,’ g;(u) TU du. 

(14) 

(15) 

Here T  is a modified normal gradient of the velocity along the cone generator (u), 
s is a nondimensional total enthalpy, gj is the orthonormal weighting function, 
and b, , b2 , b, , and b4 are parameters that depend on the flow conditions outside 
the boundary layer, the free stream conditions, and the cone geometry. Equa- 
tions (14) and (15) have been obtained from the three-dimensional compressible 
boundary layer equations applied to the more general case of a cone at angle of 
attack. The original equations were, in succession, subjected to Howarth, Mangler, 
Blasius, and Crocco transformations. Finally, the limit of zero angle of attack 
was applied. 

To solve these equations the following representations are assumed for the 
terms U/T and m/T.  

u 
;=& 

N-l 

bol + C bjlgkd , 
j=l 1 

su -= 
7 & [hot + Nf’ b,,&)]. 

i=l 

(16) 

(17) 

Certain of the coefficients bji are obtained by satisfying the boundary conditions. 
At the outer edge of the boundary layer s = 0 and gJ(l) = 0 for all i. From this 
it follows that b,, = 0. At u = 0, s = S, , which has to be given a priori. This 
leads to 

N-l 

bo, + C bilgj(0) = o, 
54 

N-l 

C b&O) = 0, 
5-l 
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and 

(20) 

To obtain the other N - 2 coefficients, Eqs. (14) and (15) are applied N - 2 
times with different weighting functions g&), j = I,..., N - 2. As in the first 
test case, the right-hand sides of Eqs. (14) and (15) are evaluated numerically 
using a composite Simpson’s rule and m evaluations of the integrand. 

It may be noted that Eqs. (14) and (15), with the introduction of Eqs. (16) and 
(17), can be treated as algebraic relations. The basic problem is then to determine 
values of the coefficients bji that will satisfy Eqs. (14) and (15). To do this use has 
been made of an iterative technique based on a function minimization method 
due to Powell [ 131. Making use of the orthonormal property, Eqs. (14) and (15) 
can be written 

4 = b,l IO1 & dU + bj, - Aj = 0, 

Fj = b*z - Bj = 0, (22) 

where Aj is the right-hand side of Eq. (14) (evaluated numerically) and Bj is the 
right-hand side of Eq. (15) (evaluated numerically). For an arbitrary choice of 
the bji)s, Ej and Fj will be nonzero. Powell’s method modifies the current values 
of b,, until 

N-Z 

G = C (Ej’ + FF) 
j=l 

is a minimum. Only solutions for which Gmin = 0 are meaningful. 
Since the method of solution is iterative, starting values for the bj:S are required. 

Once Gmin = 0 for a particular value of N has been obtained, the converged 
values of b,, are used as starting values for the solution of order N + 1. The two 
extra coefficients, bN+l,l and bN+1,3, are initially set equal to zero. Thus, at the 
beginning of the iteration to find the solution of order N + 1, only the residuals 
EN-1 and FN-1 will contribute to G. This procedure effectively reduces the starting 
value problem to finding the starting values of b,, for the lowest-order solution 
sought. Since four of the bit’s are determined by the boundary conditions the 
lowest-order solution that can satisfy Eqs. (14) and (15) is for N = 3. In this case 
the two free bfis are obtained by guessing suitable values for U/T and SU/T at 
u = 0.5 and using Eqs. (16) and (17) to give the corresponding bji’s. 

The above technique could contribute to the solution of an elliptic or mixed 
type problem where multiple shooting is employed. Thus a solution would be 
sought for the elliptic problem using the lowest order of the MIR that is feasible. 

581/18/2-4 
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This would minimize the number of unknowns that require iterative solution 
using the multiple shooting method. The solution for the lowest-order MIR would 
then form the first estimate for the MIR solution of the next-higher order, as 
indicated above. 

In the limit as N and m tend to infinity it is expected that the approximate 
solution represented by Eqs. (16) and (17) will approach the exact solution of 
Eqs. (14) and (15). To check this, solutions have been obtained up to N = 14 
and m = 128. m is the number of points used to span the boundary layer when 
evaluating Aj and Bj . The results for the nondimensional skin friction parameter, 
Rei” C, , are shown in Table I. Re, is a Reynolds number based on the local 

TABLE I 

Variation of R.@ C', with N and m 

N m = 24 m = 40 m = 64 m = 96 m = 128 m=* 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

1.28452 
1.15341 
1.14788 
1.14768 
1.14724 
1.14716 
1.14711 
1.14708 
1.14705 

1.28767 1.28818 1.28955 1.28996 
1.15570 1.15698 1.15768 1.15803 
1.14966 1.15064 1.15118 1.15145 
1.14934 1.15025 1.15074 1.15099 
1.14879 1.14961 1.15006 1.15028 
1.14868 1.14947 1.14989 1.15010 
1.14862 1.14939 1.14979 1.14999 
1.14859 1.14935 1.14975 1.14994 
1.14857 1.14933 1.14972 1.14990 
1.14856 1.14932 1.14970 1.14988 
1.14855 1.14931 1.14969 1.14987 
1.14859 1.14930 1.14969 1.14987 

1.15050 
1.15031 
1.15019 
1.15013 
1.15008 
1.15006 
1.15005 
1.15005 

co 1.14929 1.14969 1.15987 1.15005 

external flow conditions. The skin friction parameter is directly proportional to 
the value of T at the wall. It can be seen that the tabulated values of Rei” C, vary 
smoothly enough to permit extrapolation to N = co and m = co as long as the 
entries corresponding to a small m coupled with a large N are discounted (e.g., 
m = 40, N = 14). Clearly this is not an efficient combination in any case. 

The test case of a cone at zero angle of attack was deliberately chosen because 
it possesses a similarity solution. The value of Re, l/2 C, from the similarity solution 
is 1.15028. The extrapolated value from Table I, i.e., ReL’2 C, = 1.15005, compares 
favorably with the similarity solution. 

A more stringent test is obtained if the heat transfer to the wall is considered. 
The variation of the nondimensional heat transfer parameter, Pr Rey2 St is shown 
in Table II. Pr is the Prandtl number, Sr is the Stanton number, and the parameter 
Pr Re212 St is proportional to the gradient as/au at the wall. 
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TABLE II 

Variation of Pr Rei” St with N and m 

N m = 24 m = 40 m=64 m = 96 m = 128 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

0.29255 
0.47669 
0.48676 
0.48855 
0.49553 
0.49832 
0.50546 
0.49455 
0.61802 

0.29038 0.29131 0.28992 0.28970 
0.47652 0.47663 0.47660 0.47657 
0.48659 0.48652 0.48643 0.48646 
0.48825 0.48813 0.48807 0.48804 
0.49472 0.49454 0.49448 0.49446 
0.49705 0.49675 0.49667 0.49664 
0.49947 0.49865 0.49848 0.49843 
0.50058 0.49994 0.49975 0.49970 
0.50629 0.50147 0.50080 0.50067 
0.49778 0.50165 0.50146 0.50137 
0.55076 0.50552 0.50258 0.50212 
0.24730 0.50039 0.50238 0.50240 

Table II indicates that the heat transfer parameter is not as well behaved as 
Rei” C, with increasing N. An unrealistic oscillation with increasing N develops 
if m is small. From these results and others not shown it is necessary to increase 
m as N increases. For the range of N and m shown, it appears that only the values 
corresponding to m = 128 are free from oscillation; consequently, no attempt 
has been made to extrapolate the results. For this case an accurate solution, based 
on similarity solutions, is given by Hantzsche and Wendt [14] and by Young [15]. 
For a Prandtl number of 0.7 this solution is Pr Rei12 St = 0.50644. The tabulated 
value at N = 14 and m = 128 is within 1% of Young’s value for Pr Rei” St. It 
is noticeable that a fairly large value of N is required before the heat transfer 
parameter becomes close to Young’s solution. The relatively poor behavior of 
the heat transfer parameter is not altogether unexpected when it is recalled that 
&V/&J at the wall depends on differentiating Eqs. (16) and (17) twice. However, 
for the more general case of an inclined cone at large angle of attack the computed 
heat transfer parameter shows good agreement with experimental results. 

In conclusion, an improvement to Dorodnitsyn’s formulation of MIR is pro- 
posed. The main advantage of the present formulation is that it can readily be 
extended to higher orders. 
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